District cooling improves the energy efficiency while reducing the carbon footprint of urban comfort cooling

District cooling improves the energy efficiency while lowering the carbon footprint of urban comfort cooling.

District cooling has the potential to improve the energy efficiency while also lowering the carbon footprint of comfort cooling in urban areas. The following discussion demonstrates how district cooling technology can be used to achieve these two important objectives:

How does district cooling improve the energy efficiency of cooling energy production?

Due to economies of scale, the district cooling system can adopt energy-efficient technology such as industrial grade high-efficiency chillers, series-connected chiller modules, thermal energy storage, and cogeneration or combined heat and power.

Thermal energy storage shifts cooling energy production from peak hours to off-peak hours.

Read more

What are the benefits of District Cooling?

What are the benefits of District Cooling?

Introduction

In 2015, United Nations Environmental Program released the publication, “District Energy in Cities: Unlocking the Full Potential of Energy Efficiency and Renewable Energy”. The report stated that:

  • Cities account for over 70 percent of global energy use and 40 to 50 percent of greenhouse gas emissions worldwide.
  • Half of cities’ energy consumption is for heating and cooling.

The above figures show that comfort cooling is a major consumer of electricity and is also responsible for a high percentage of greenhouse gas emissions in the urban environment. The same publication advocates for the adoption of district cooling as a sustainable energy solution for the modern city.

Aerial View of a District Cooling System
Aerial View of a District Cooling System

District cooling is the generation and distribution of cooling energy in the form of chilled water from a central chiller plant to multiple end-user buildings for the purpose of comfort cooling or process cooling. The chilled water produced at the central chiller plant is distributed to the consumers via a network of chilled water distribution piping.

District cooling systems achieve economy of scale by aggregating the cooling loads from a large user base into a central chiller plant. The large cooling demand seen by the district cooling system allows the adoption of energy-efficient technology such as industrial grade high-efficiency chillers, series-connected chiller modules, thermal energy storage, and cogeneration.

District cooling systems are often structured as energy utilities which provide cooling energy as a service. As a modern, cost-effective, and energy-efficient cooling energy solution, district cooling delivers numerous benefits to its multiple stakeholders.

Read more